
Key Schedule Weaknesses in SAFER+

John Kelsey � Bruce Schneiery David Wagnerz

Abstract

We analyze the key schedule of the SAFER+ block cipher, focusing on the poor di�usion of key
material through the cipher when using SAFER+ with 256-bit keys. We develop a meet-in-the-middle
attack on 256-bit SAFER+ requiring 12� 224 bytes of memory, three known plaintext/ciphertext pairs,
and work approximately equivalent to 2240 SAFER+ encryptions. We also develop a related-key attack
on 256-bit SAFER+ requiring 3� 232 chosen plaintexts under two keys with a chosen xor relationship,
and work approximately equivalent to 2200 SAFER+ encryptions. We consider a number of other key-
schedule properties, such as equivalent keys, DES-style weak and semiweak keys, and key-dependent
linear and di�erential characteristics. We fail to �nd any such properties, and o�er some arguments why
some of these are unlikely to exist. Finally, we propose an improvement to the SAFER+ key schedule
which defends against our attacks, while causing no apparent weakening of the cipher to other attacks.

1 Introduction

In this paper, we discuss the key schedule of
SAFER+ [MKK98], one of the �fteen AES candi-
dates. SAFER+, like the other AES candidates,
is actually three di�erent ciphers; one for 128-bit
keys, one for 192-bit keys, and one for 256-bit
keys. For simplicity of discussion, in the remain-
der of this document we will call these ciphers
SAFER+/128, SAFER+/192, and SAFER+/256,
respectively. Some AES candidates, such as CAST-
256 [Ada98] and E2 [NTT98], use essentially the
same key schedule and cipher structure for all three
versions, simply padding shorter keys to 256 (or
more) bits before applying the big key schedule.
Other AES candidates, such as SAFER+, Rijn-
dael [DR98], and Two�sh [SKW+98], make changes
to the actual cipher for the di�erent key sizes.
(SAFER+ and Rijndael change the encryption func-
tion, making the cipher slower for longer keys.
Two�sh changes the key schedule, so that the cipher
encrypts and decrypts at the same speed regardless
of key length1.) In SAFER+, the 128-bit keys are
used with eight rounds, the 192-bit keys are used
with twelve rounds, and the 256-bit keys are used
with sixteen rounds.

We have the following �ndings:

� We found that in SAFER+/192 and

SAFER+/256, the key schedules do a poor
job of getting the whole key involved quickly
in the encryption process. SAFER+/192
takes �ve (of twelve) rounds to get the
whole key involved in the encryption process;
SAFER+/256 takes nine (of sixteen) rounds
to do so.

� Due to this slow key di�usion, we were
able to �nd a meet-in-the-middle attack on
SAFER+/256. This attack requires work
equivalent to about 2240 SAFER+/256 en-
cryptions and about 12�224 bytes of memory.

� Also due to this slow key di�usion, we
were able to �nd a related-key attack on
SAFER+/256. This attack requires very little
memory, 3 � 232 chosen plaintexts encrypted
under two di�erent keys with a chosen xor re-
lationship, and work approximately equivalent
to 2200 SAFER+/256 encryptions.

� We were unable to �nd any weak or semi-weak
keys, and we strongly suspect that there are
none.

� We were unable to �nd any equivalent keys or
any way for pairs of keys to be equivalent. We
would be quite surprised to see a pair of equiv-
alent keys for SAFER+.

�Counterpane Systems; 101 E Minnehaha Parkway, Minneapolis, MN 55419, USA; kelsey@counterpane.com.
yCounterpane Systems; schneier@counterpane.com.
zUniversity of California Berkeley, Soda Hall, Berkeley, CA 94720, USA; daw@cs.berkeley.edu.
1Actually, this is true only of the precomputing key schedule used for maximum encryption throughput with low key agility.

Some Two�sh implementations will have slower encryption and slightly slower key scheduling.

1

� We were unable to �nd any quasi-weak keys.
However, we have no strong intuition about
whether or not such keys might exist.

� We were unable to �nd any way for slide at-
tacks [Wag95, BW99] or related-key slide at-
tacks [Bih94, KSW96, KSW97] to work, due
to the key biases.

1.1 Practical Implications of Our

Findings

Both the meet-in-the-middle attack and the related-
key attack demonstrate substantial violations of the
SAFER+/256 security claims. A block cipher with
a 256-bit key ought to provide 256 bits of security;
that is, an attacker ought to have to try about 2255

trial encryptions under di�erent keys, on average, to
recover the key.

Neither of our attacks is practical at present,
due to their enormous computational requirements.
However, there is little reason to use a 256-bit key
if it doesn't provide substantial improvements in se-
curity over a 192-bit key. This is especially true in
the case of SAFER+, since SAFER+/192 is about
1.3 times faster than SAFER+/256.

Failing to �nd various properties in the key
schedule implies good things for the cipher. Weak,
semi-weak, equivalent, quasi-weak keys, or any
complementation properties would cause security
problems in some applications. For example, if
SAFER+/256 had pairs of equivalent keys, it would
be unsuitable for use as a hash function.

1.2 Guide to the Rest of the Paper

The rest of the paper is organized as follows. We
�rst give a brief description of the SAFER+ cipher
and key schedule. Next, we describe our meet-in-
the-middle attack, and then our related-key attack.
We �nally propose a �x to the SAFER+/192 and
SAFER+/256 key schedules, and end with some
open questions. In an appendix we describe some
additional properties of the SAFER+ key schedule.

2 SAFER+ and its Key Sched-
ule

SAFER+ is de�ned in [MKK98]. The cipher, which
is related to the SAFER family of ciphers de�ned
over the last few years [Mas94], consists of a se-
quence of identical rounds (with only di�erent round
keys) and an output transformation. Each round
consists of an S-box layer and a mixing layer.

2.1 The Cipher

The S-box layer processes each of the sixteen bytes
of input independently: one subkey byte is combined
into the input byte, then an 8-bit S-box is applied,
then another key byte is combined into the byte.
This is done in parallel to all sixteen bytes in the
block being encrypted. SAFER+ uses two di�erent
byte transformations:

yi = S[xi � sk2i] + sk2i+1

yi = S�1[xi + sk2i]� sk2i+1

This is more detail than we need for most of our anal-
ysis. For a more precise description, see [MKK98].

The mixing layer involves adding the bytes to-
gether in a complicated structure based on the PHT
structure:

a = a+ b

b = 2a+ b

The ultimate e�ect of the mixing layer is described
by a matrix M shown in [MKK98]. Note that the
matrix M is not self-inverse, which creates an asym-
metry between encryption and decryption.

The output transformation is simply a layer of
adding and xoring of key material. Note that the
output transformation isn't a full nonlinear layer of
the cipher, which also contributes to asymmetry in
the cipher. This has a small impact on our attacks,
described below.

2.2 The Key Schedule

The SAFER+ key schedule expands a 16-, 24-, or
32-byte key to 272, 400, or 528 bytes of subkey, re-
spectively. Each round uses 32 bytes of subkey; the
output transformation uses 16 bytes of subkey. The
key is �rst extended by one byte, thus to 17, 25, or
33 bytes of key; the extended byte is the xor of all
other key bytes. We will refer to that extended key
as ek[0::n]. The key schedule also makes use of \key
biases," a set of constant bytes we will refer to as
kb[0::m� 1].

Let sk2i; sk2i+1 be the subkeys used for process-
ing the ith byte of the block. Then, we derive the
subkeys as:

sk2i = kb[2i] + (ek[i] <<< 3i)

sk2i+1 = kb[2i+ 1] + (ek[i+ 1] <<< 3i)

Note the e�ect of this: Each round has 32 subkey
bytes, but they make use of only seventeen bytes of
the extended key material. This has an enormous
negative impact on the cipher's security, as we dis-
cuss below.

2

2.3 Key Di�usion

One useful thing to look at with any cipher is how
quickly the key material a�ects the internal state of
the cipher. E�cient mixing of the key bits into the
encryption process minimizes the advantage an at-
tacker can get by guessing some bits of the key, and
then mounting an attack based of his guess.

In SAFER+, an examination of key di�usion ex-
poses an apparent weakness in the cipher design. In
SAFER+/128, every bit of key is used in the �rst
round and in every round thereafter. This is an ex-
cellent property for a cipher to have;2 an attacker
cannot peel even a single round o� without guessing
the whole key. One might expect to see the same
property for SAFER+/192 and SAFER+/256, since
256 bits of key material are actually used in each
round. Instead, it takes �ve rounds (out of twelve)
to get all of the key bytes involved in the encryption
in SAFER+/192, and it takes nine rounds (out of a
total of sixteen) to get the whole key involved in the
encryption in SAFER+/256.

To understand the impact of this, consider Ta-
ble 1, which shows, for a 256-bit key, how many bytes
of key material must be guessed to get to complete
knowledge of each round's output (guessing from the
top) or input (guessing from the bottom).

A less impressive, but still interesting chart exists
for 192-bit keys; see Table 2.

Both of these tables demonstrate the failure of
SAFER+'s key schedule to handle keys longer than
128 bits. The failure in the 256-bit case is especially
harmful.

Early in our analysis of SAFER+, the obviously
poor key di�usion led us to expect related-key at-
tacks to be possible. In Section 4, we will describe a
related-key attack on SAFER+/256. While consid-
ering the key di�usion, we drew Table 1. This led us
to our meet-in-the-middle attack on SAFER+/256.
Table 1 will appear in slightly changed form twice
below, discussing speci�c attacks on SAFER+/256.

3 A Low-Memory Meet-
in-the-Middle Attack on
SAFER+/256

A meet-in-the-middle attack on a cipher can be car-
ried out when we can make a guess about part of
the key from both the plaintext side and from the
ciphertext side, and compute the same internal value
from both sides. In this case, we try each possible
partial key value from the plaintext side, computing

the intermediate value and placing it into a sorted
list. We then do the same thing from the ciphertext
side, merging the results into the same sorted list.
We then look for matches. Matching intermediate
values indicate a possible correct guess; if the in-
termediate values are large enough, then when they
match, the probability is very high that the guess
from the plaintext side and from the ciphertext side
that match are both correct guesses.

To see how the meet-in-the-middle attack on
SAFER+ is carried out, we must �rst consider a
variant of Table 1. Table 3 describes the attack.

In the attack, we consider a plaintext/ciphertext
pair from the key we're trying to recover. From the
plaintext side, we compute all 229�8 = 2232 possible
values of extended key bytes used in the �rst seven
rounds. This tells us the value of all but two bytes
of the input into the PHT layer in round 7. A brief
look at the transition matrix that describes the PHT
layer of SAFER+ will reveal an interesting property:
Although every byte of output is unknown when a
single byte of input is unknown, it is possible to com-
pute expressions in the output bytes from the PHT
that are una�ected by the two unknown input bytes.
At this point in the attack, we use these expressions
as our intermediate cipher state, and put them into
our sorted list.

From the ciphertext side, we compute all 230�8 =
2240 values of extended key bytes used in the output
transformation and the last seven rounds. This gives
us all but two bytes of output from the PHT layer
of round 7. We can compute the same expressions
as above from these bytes, and put them into our
sorted list, as well.

The result is a meet-in-the-middle attack requir-
ing on the order of 2240 encryptions and memory.
This is an enormous amount of memory. However,
we can improve this by noticing that we have guessed
mostly the same extended key bytes from both sides.
Whenever an extended key byte appears in guesses
from both sides, we guess it �rst, and then try the
meet-in-the-middle attack. Thus, we do the follow-
ing:

1. Guess extended key bytes 0::14; 18::28, for a
total guess of 26 bytes, or 208 bits.

2. Using the above guess, try all possible val-
ues for extended key bytes 15::17. Use these
bytes to encrypt forward through the output of
round 6, and thus to compute a set of bytes de-
rived from the output of round 7 that don't de-
pend on extended key bytes 29::30, and which

2Note the key schedule we designed for Two�sh [SKW+98].

3

Round Top Bottom Bits
Guess Guess

0 17 { 136
1 19 { 152
2 21 { 168
3 23 { 184
4 25 { 200
5 27 { 216
6 29 { 232
7 31 { 248
8 { { |
9 { 30 240
10 { 28 224
11 { 26 208
12 { 24 192
13 { 22 176
14 { 20 160
15 { 18 144
OX { 16 128

Table 1: Partial Guessing Attack on SAFER+/256.

Round Top Bottom Bits
Guess Guess

0 17 { 136
1 19 { 152
2 21 { 168
3 23 { 184
4 { { |
5 { { |
6 { { |
7 { { |
8 { 24 192
9 { 22 176
10 { 20 160
11 { 18 144
OX { 16 128

Table 2: Partial Guessing Attack on SAFER+/192.

4

Round Top Bottom Comments
Guess Guess

0 17 {
1 19 {
2 21 {
3 23 {
4 25 {
5 27 {
6 29 {
7 { { Know all but two bytes into PHT layer.
8 { { Know all but two bytes output from above PHT layer.
9 { 30
10 { 28
11 { 26
12 { 24
13 { 22
14 { 20
15 { 18
OX { 16

Table 3: Meeting in the Middle of SAFER+/256.

will also be computable from the bottom. Gen-
erate a list of all 224 of these twelve-byte en-
tries, in sorted order.

3. Using the guess in step 1, try all possible val-
ues for extended key bytes 29::32. Compute
the same set of bytes as will be computed in
step 2. For each set of intermediate bytes com-
puted, look it up in the sorted list from the
previous step.

4. If one or more matches occur, we try the
matched key guesses from the plaintext and
ciphertext sides on the two other plain-
text/ciphertext pairs. If we get matching val-
ues for all three, we are overwhelmingly likely
to have the right values for the key.

3.1 Computing the Intermediate Val-

ues

The ability to compute the intermediate values is
what makes this attack work. Here we explain more
clearly how these values are computed.

Consider the transition matrix describing the
PHT layer of each round. Let x1::16 be the bytes
of input to the PHT layer, and y1::16 be the bytes
of output from the PHT layer. We know x1::14 and
y3::16. What intermediate values can we compute
from only these bytes?

Consider the expressions for y3 and y4:

y3 = z3 + x15 + x16

y4 = z4 + x15 + x16

where z3 and z4 are values that depend only on bytes
x1::14, and so are known. We can't yet compute these
expressions for y3 or y4 from just the known x values,
since x15; x16 are unknown. However, the expression

y3 � y4 = z3 � z4 + x15 � x15 + x16 � x16 = z3 � z4

is known, since it depends only on x1::14. Knowing
only y3::16, we can still compute this internal value.
There are twelve independent expressions of this
kind which we can use, all of the form a0yi � a1yj .
This gives a 96-bit �ltering condition, so incorrect
guesses are expected to cause false alarms with prob-
ability only 2�96.

3.2 Detecting Correct Key Guesses

As we described above, for each 208-bit guess, we
compute 232 twelve-byte intermediate values from
the ciphertext, and 224 such values from the plain-
text. There are thus 256 pairs of values, each with a
2�96 probability of matching. We expect that about
2�40 of our 208-bit guesses will result in a match-
ing value, and so we expect about 2168 guesses will
require more work.

To handle matching values, we use three plain-
text/ciphertext pairs. For any 208-bit guess, if

5

we �nd a matching pair of entries from one plain-
text/ciphertext pair, we try the next. If that one
gives us the same matching pair, we try the third. If
all three match, then we with overwhelmingly high
probability, we have found the right key values.

In practice, this has virtually no noticeable ef-
fect on the time taken for the attack. By compari-
son with 2240 work, the additional 2168�232 work is
negligible.

3.3 Total Work Involved

To compute the total work involved, we simply com-
pute the average amount of work done per 208-bit
guess. It should be obvious that the rare occurrence
of false positives (matches in our twelve intermedi-
ate bytes that don't indicate a correct key guess) has
an insigni�cant e�ect on this total. For each 208-bit
guess, we do the following:

1. Encrypt forward 224 di�erent values, each for
essentially one half of the SAFER+/256 en-
cryption function, and build the intermedi-
ate results into a sorted list, requiring about
24� 224 � 229 swaps in memory. (This is less
than 224 SAFER+/256 half encryptions, and
could be further optimized with the use of a
hash table instead of a sorted list.)

2. Decrypt backward 232 di�erent values, each for
essentially one half of the SAFER+/256 en-
cryption function, and check each resulting in-
termediate value in the table generated above,
requiring about 24 compare operations. (This
is less than 232 SAFER+/256 half encryptions,
and could be further optimized with the use of
a hash table instead of a sorted list.)

Thus, the total requirements for this attack are
as follows:

� Work equivalent to about 2208 � 232 = 2240

SAFER+/256 encryptions.

� Memory of about 12� 224 bytes of memory.

� Three known plaintexts and their correspond-
ing ciphertexts.

4 A Related-Key Attack on
SAFER+/256

Related-key attacks have been extensively discussed
in [WH87, Bih94, KSW96, KSW97]. A related-key
attack is an attack in which encryptions are re-
quested under two or more keys with a relationship

chosen by the attacker. By observing the resulting
ciphertexts, the attacker is able to learn something
about the actual keys used.

When we �rst saw the SAFER+/256 key sched-
ule, we suspected a related-key attack might be pos-
sible, because of the poor key di�usion. The best
related-key attack we have found so far is fairly
straightforward:

1. Change some extended key bytes that are used
in the early rounds, and then aren't used again
until much later in the encryption process. Use
these changes to determine K 0 = K� � K,
where K is the original key and K� is the al-
tered key.

2. Choose di�erence X 0 = X � X� to o�set the
di�erence in K with some reasonably high
probability.

3. When we get a right pair, we will get the same
values after several rounds of encryptingX un-
der key K, and of encrypting X� under key
K�. We guess the last few rounds' extended
key bytes to test this.

Note Table 4, which shows the key bytes used in
each round's nonlinear layer in SAFER+/256.

From this, we can see two facts that will
be used below to build a related-key attack on
SAFER+/256:

1. Extended key bytes 2 and 3, after being used
in rounds 0 and 1, are not used again until
round 10.

2. We can learn the output from round 11 by
guessing 24 bytes (192 bits) of extended key
material.

4.1 Overview of The Attack

In the attack, we do not start out knowing K, but
we get to choose an xor relationship betweenK and
K�, a related key. We then are able to request a se-
quence of chosen plaintexts under both keys. We use
the relationships between the resulting ciphertexts
to learn the original key, K. Our goal is to make
a change in the key, and �nd some way to make an
o�setting change in the plaintext encrypted under
the changed key. We will try many plaintext pairs
(3�232) under these two di�erent keys; most of these
pairs will diverge after a round or two of encryption,
but in a small number of pairs, called right pairs, the
changes will come out of round 0 in a certain form,
will cancel out with key di�erences in the nonlinear

6

Round Bottom Ext. Key
Guess Bytes

0 { 0-16
1 { 2-18
2 { 4-20
3 { 6-22
4 { 8-24
5 { 10-26
6 { 12-28
7 { 14-30
8 { 16-32
9 30 18-32,0-1
10 28 20-32,0-3
11 26 22-32,0-5
12 24 24-32,0-7
13 22 26-32,0-9
14 20 28-32,0-11
15 18 30-32,0-13
OX 16 32,0-14

Table 4: How Key Bytes are Used (and Guessed) in SAFER+/256.

layer of round 1, and will not reappear until the non-
linear layer of round 10. This will allow us to guess
enough key material to see the output of round 11.
>From this, we are able to distinguish right pairs
from wrong pairs, when we have guessed the right
value for that part of the key. Detecting right pairs,
then, is how we determine whether our partial key
guess is correct.

We will change key bytes 2 and 3 (number-
ing from zero). In the �rst round, we choose
pairs to be encrypted under each key that will,
in some pairs, lead to an output di�erence of
(0; 0; 128; 0; 128; 128; 0; :::; 0). Such pairs will lead
to an input di�erence into the second round of
(128; 128; 0; 0; :::; 0). The changed key bytes will
then have a probability of approximately 2�8 of can-
celing out this change, so that the output of the
second round has an all-zero di�erence between the
encryptions with two di�erent keys. When all this
happens, we say that we have a right pair. For such
a right pair, we can guess the last 192 bits of key
material used, and decrypt up through the output
of round 11. This allows us to compute the same
twelve bytes of intermediate result as we used in
the meet-in-the-middle attack, above. If these bytes
are identical for the pair of texts being considered,
it means that this is very likely to be a right pair
(probability of 2�96 for wrong pairs, and 1 for right
pairs). This works because the changed key bytes,
once used, don't get reused until round 10 (number-
ing from 0).

The work involved in the attack is the partial
guess (192 bits) for each of 256 candidate plaintext
pairs encrypted under the two related keys, plus a
small additional amount of work as needed to weed
out false alarms. Note that we do not try our par-
tial guess on all plaintext pairs. Instead, we use
parts of our guess to determine which pairs could be
right pairs if this guess is correct. We thus do about
2200 SAFER+/256 partial trial decryptions for the
attack. That's approximately the same amount of
work as 2199 full SAFER+/256 encryptions. We
trial decrypt pairs of blocks, so our total work is
thus approximately equivalent to 2200 SAFER+ en-
cryptions.

We thus do work approximately equivalent to
2200 SAFER+/256 encryptions, and request 3 � 232

chosen plaintexts under each of the two related keys,
and thus learn 192 bits of the extended key. The re-
maining key material can be learned after this with
a 64-bit search.

4.2 Choosing the Key Di�erence

The key di�erence is (0; 0; c; 128; 0; 0; :::; 0), where
the di�erences are speci�ed in terms of bytes, and c

is some 1-byte di�erence other than 0 or 128. (About
half of all possible c values ought to work for this at-
tack.) We must choose c so that for at least one pair
of byte u, we have the property that

exp[u]� exp[u� 128� c] = 128;

7

where exp[x] = 45x mod 256. The nonlinear layer of
round 0 will have the following bytewise di�erences
in its subkey bytes:

(0; 0; c; 128; 0; 0; :::; 0)(0; c; 128; 0; 0; :::; 0)

The nonlinear layer of round 1 will have the follow-
ing bytewise di�erences in its subkey bytes:

(c; 128; 0; 0; :::; 0)(128; 0; 0; :::; 0)

4.3 Choosing the Plaintext Pairs

By analyzing the matrix that describes the mixing
layer, we were able to �nd the following di�erential:

(0; 0; 128; 0; 128; 128; 0; 0; :::; 0)�!

(128; 128; 0; 0; :::; 0)

We were also able to see that with a plaintext pair
with the di�erence (128; 128; 0; 0; :::; 0) going into
round 1, our chosen-key di�erence would have some
possibility of canceling out against the plaintext dif-
ference, meaning that the next eight rounds would
be identical in both texts.

This left the question of getting plaintext pairs
that would get the desired output di�erence from
round 0. This turns out to be fairly easy to do. We
request plaintext pairs P; P 0 as

P = (t0; u(xk1); t2; t3; w(xk4); y(xk5);
t6; i; j; t9; t10; :::; t15)

P 0 = (t0; v(xk1); t2 + c; t3 � 128; x(xk4); z(xk5);
t6; i; j; t9; t10; :::; t15)

where (u; v) satis�es log[u+ xk1]� log[v+ xk1] = c,
(w; x) satis�es exp[w � xk4] � exp[x � xk4] = 128,
and (y; z) satis�es log[y + xk5]� log[z + xk5] = 128
for each possible value of xk1, xk4, and xk5, for in-
dices 0 � i < 256, 0 � j < 3. We thus expect to
need 3� 232 plaintext pairs.

Note that by having i take on all possible values,
in the output of round 0, byte 7 takes on all possible
values. After the mixing layer, this forces byte 0 of
the input to take on all possible values. Since we
know that for at least one value u we will satisfy

exp[u]� exp[u� 128� c] = 128

(where exp[x] = 45x mod 256), we know that at
least one of these values, if it gets the input dif-
ference (128; 128; 0; 0; :::; 0) into round 1, will be a
right pair.

4.4 Tracing the Di�erentials through

the Cipher

4.5 Extracting the Key

We now have 3� 232 pairs encrypted under the two
related keys. To extract the key, we must guess
enough key material to learn the output from round
11, 192 bits. We must then do a partial decryption
on any pairs of texts that might be right pairs, to
look for the right pairs.

Instead of doing the trial partial decryptions on
all 3�232 text pairs, we use some information about
the key we have already guessed. Extended key
bytes 1, 4, and 5 must be guessed to get the out-
put from round 11. Each of these bytes leaves only
3�256 pairs of texts as possible right pairs, because
of the way we chose the texts.

For each 192-bit guess of the last few rounds' key
material, we do the following:

1. Select one set of 256 pairs that (because of the
way we chose the pairs) is guaranteed to have
at least one right pair in it. (This is one set
of pairs with the (u; v), (w; x), and (y; z) pairs
selected by the initial key guess, with j = 0,
and with i taking on all values between 0 and
255 inclusive.)

2. Partially decrypt all 256 pairs, and compute
the same 12-byte expressions used in the meet-
in-the-middle attack, above. (This amounts to
a 12-byte value that will be identical if this is
a right pair.)

3. If we get a match between the 12-byte values
for both texts in any pair, try the set of 256
pairs with j = 1 and with j = 2. If these all
match, then with overwhelmingly high proba-
bility, we have a right pair, and our guess of
192 bits of key is correct.

5 Fixing the SAFER+/256
and SAFER+/192 Key
Schedules

Having demonstrated weaknesses in the
SAFER+/192 and SAFER+/256 key schedules, we
wanted to try to �x those weaknesses. The prob-
lem with the SAFER+ key schedule for long keys is
that it takes too many rounds for the whole key to
get involved in the encryption. Both of our attacks
exploit this weakness.

All three SAFER+ ciphers use 32 bytes of key
material per round. The largest keys these ciphers

8

Part of Truncated Comments
Cipher Di�erential

in Output

Input (0; ?; c; 128; ?; ?; 0; 0; :::; 0)
First Key (0; ?; 0; 0; ?; ?; 0; 0; :::; 0) Cancel out in bytes 2,3
Addition with prob. = 1.
S-box (0;�c; 0; 0; 128; 128; 0; 0; :::; 0) Critical events in bytes 1,4,5.
Second Key (0; 0; 128; 0; 128; 128; 0; 0; :::; 0) Cancel out in byte 1.
Addition
Mix (128; 128; 0; 0; :::; 0) Probability 1.
First Key (?; 0; 0; :::; 0) Critical event in byte 0,
Addition cancel with prob. = 1 in byte 1.
S-box (128; 0; 0; :::; 0)
Second Key (0; 0; :::; 0) Cancel in byte 1.
Addition

Table 5: Truncated Di�erential Used in Related Key Attack

need ever process are 32 bytes long. Intuitively,
then, getting good key di�usion ought not to be a
terribly di�cult task. Below, we propose a change to
the SAFER+/256 and SAFER+/192 key schedules.
This brings these two key schedules into line with the
SAFER+/128 key schedule in the sense that with
our changes, all three ciphers will have the property
that every single round is a�ected by every bit of
key.

Let ski;j be the jth subkey byte used in round i,
xki be the i-th byte of extended key (the key with
a parity byte appended to the end), and f(x; i; j)
represent the bit rotation and addition with a bias
word to be applied to the extended key byte upon
which ski;j is to be based. Note that f(x; i; j) is
unchanged from the original key schedule.

We then have the formulae:

ski;j = f(xk2i+j mod 33; i; j)

for 256 bit keys, and

ski;j = f(xk2i+j mod 25; i; j)

for 192 bit keys.
Table 6 and Table 7 show the extended key bytes

to be used for each byte position's two subkey bytes
in each round. The rotation of the bytes and the
use of key biases is unchanged|we simply select the
extended key bytes to be used in a di�erent order
than in the original SAFER+ key schedules. In the
tables, the �rst column of numbers represents the
round, numbering from 0 to 15 for SAFER+/256,
and from 0 to 11 for SAFER+/192. The remain-
ing columns show, for each byte position, which ex-
tended key byte is to be used.

For both these new key schedules, we have the
following properties:

1. To guess any round's subkey, an attacker must
e�ectively guess the whole key. This eliminates
the whole class of attacks that requires a guess
of several rounds' key material.

2. Neither of our attacks works on these key
schedules.

3. Any change to the key changes at least one
byte of the key material used in every round.

4. As discussed in the Appendix, below,
SAFER+ doesn't appear to have any weak,
semi-weak, or equivalent keys. This appears
to be equally true of our proposed key sched-
ule.

5. Every extended key byte is combined with two
others at di�erent points in the key schedule.

6. With 192-bit keys, the proposed key schedule
uses every byte of the extended key at least
once in each round. With 256-bit keys, the
proposed key schedule uses every extended key
byte in at least �fteen rounds.

7. With 256-bit keys, no extended key byte is ever
used twice in the same round.

8. Extended key bytes are never used with them-
selves in the nonlinear byte substitution layer.

9

00 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 00

02 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 00 01 02

03 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 00 01 02 03 04

04 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 00 01 02 03 04 05 06

05 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 00 01 02 03 04 05 06 07 08

06 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 00 01 02 03 04 05 06 07 08 09 10

07 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 00 01 02 03 04 05 06 07 08 09 10 11 12

08 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

09 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 00
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

10 20 21 22 23 24 25 26 27 28 29 30 31 32 00 01 02
03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

11 22 23 24 25 26 27 28 29 30 31 32 00 01 02 03 04
05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

12 24 25 26 27 28 29 30 31 32 00 01 02 03 04 05 06
07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

13 26 27 28 29 30 31 32 00 01 02 03 04 05 06 07 08
09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

14 28 29 30 31 32 00 01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

15 30 31 32 00 01 02 03 04 05 06 07 08 09 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

OX 32 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Table 6: Use of Extended Key Bytes in Proposed New SAFER+/256-SK Key Schedule.

9. Both of these proposed key schedules have
some bytes that overlap between nonlinear lay-
ers of successive rounds, so that some bytes
may get two values derived from the same ex-
tended key byte added into it in succession.
(The original SAFER+ key schedule also has
this property.) This does not appear to cause
any weaknesses in the cipher.

10. Pairs of extended key bytes are used together
in the nonlinear layer of the SAFER+ round
function in many successive rounds, both in
the original key schedule and in our proposed
one. However, in ours, in the 256-bit key case,
each extended key byte is used with only one
other extended key byte in any given round,
and it is used with the same key byte in many
successive rounds. Thus, in our proposed 256-
bit key schedule, extended key byte 15 is used
with byte 31 in rounds 0{7, and with extended

key byte 32 in rounds 9{15. This also does not
appear to cause any weakness in the whole ci-
pher.

We note that these altered key schedules are
very similar in spirit to the original key sched-
ules, requiring only a small programming change.
Further, they simply apply the same principle as
does the SAFER+/128 key schedule; i.e., the whole
key a�ects every round. There is some reason
to believe that such a change might be allowed
to SAFER+'s key schedule, if it should advance
to the second round of AES. In keeping with the
naming convention of Lars Knudsen's recommended
change to SAFER's key schedule [Knu95a], we sug-
gest calling the changed ciphers SAFER+/192-SK
and SAFER+/256-SK.

10

00 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 00 01 02 03 04 05 06

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 00 01 02 03 04 05 06 07 08

02 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 00 01 02 03 04 05 06 07 08 09 10

03 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 00 01 02 03 04 05 06 07 08 09 10 11 12

04 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

05 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 00
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

06 12 13 14 15 16 17 18 19 20 21 22 23 24 00 01 02
03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

07 14 15 16 17 18 19 20 21 22 23 24 00 01 02 03 04
05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

08 16 17 18 19 20 21 22 23 24 00 01 02 03 04 05 06
07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

09 18 19 20 21 22 23 24 00 01 02 03 04 05 06 07 08
09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10 20 21 22 23 24 00 01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 00 01

11 22 23 24 00 01 02 03 04 05 06 07 08 09 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 00 01 02 03

OX 24 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Table 7: Use of Extended Key Bytes in Proposed New SAFER+/192-SK Key Schedule.

6 Open Questions

These results clearly raise a number of questions
about the design of the SAFER+ key schedule:

1. Are our meet-in-the-middle and related-key
attacks the best of their kind that can be
mounted? Can similar attacks be mounted
somehow on SAFER+/192?

2. Can a variant of our related-key attack be used
to �nd collisions more easily than should be
possible when SAFER+/192 or SAFER+/256
is used as a hash function?

3. Are other attacks available which exploit
the poor key di�usion of SAFER+/192 and
SAFER+/256?

4. Are there attacks available on our proposed
SAFER+/192-SK and SAFER+/256-SK key
schedules?

5. Are there other interesting key schedule prop-
erties of SAFER+ yet to be discovered?

We hope that SAFER+ will receive more study
to address these issues.

7 Acknowledgements

The authors wish to thank Jim Massey for useful
feedback on this paper.

References

[Ada98] C. Adams, \The CAST-256 Encryption
Algorithm," NIST AES Proposal, Jun 98.

[Bih94] E. Biham, \New Types of Cryptanalytic
Attacks Using Related Keys," Journal of

Cryptology, v. 7, n. 4, 1994, pp. 229{246.

[BPS90] L. Brown, J. Pieprzyk, and J. Se-
berry, \LOKI: A Cryptographic Primi-
tive for Authentication and Secrecy Ap-
plications," Advances in Cryptology |

AUSCRYPT '90 Proceedings, Springer-
Verlag, 1990, pp. 229{236.

[BS93] E. Biham and A. Shamir, Di�erential

Cryptanalysis of the Data Encryption

Standard, Springer-Verlag, 1993.

[BW99] A. Biryukov and D. Wagner, \Slide
Attacks," Fast Software Encryption,

6th International Workshop Proceedings,
Springer-Verlag, to appear.

11

[DR98] J. Daemen and V. Rijmen, \AES Pro-
posal: Rijndael," NIST AES Proposal,
Jun 98.

[HKM95] C. Harpes, G. Kramer, and J. Massey,
\A Generalization of Linear Cryptanalysis
and the Applicability of Matsui's Piling-
up Lemma," Advances in Cryptology |

EUROCRYPT '95 Proceedings, Springer-
Verlag, 1995, pp. 24{38.

[HM97] C. Harpes and J. Massey, \Partitioning
Cryptanalysis," Fast Software Encryption,
4th International Workshop Proceedings,
Springer-Verlag, 1997, pp. 13{27.

[Knu93] L.R. Knudsen, \Cryptanalysis of LOKI,"
Advances in Cryptology | ASIACRYPT

'91, Springer-Verlag, 1993, pp. 22{35.

[Knu95a] L.R. Knudsen, \A Key-Schedule Weak-
ness in SAFER K-64," Advances in

Cryptology|CRYPTO '95 Proceedings,
Springer-Verlag, 1995, pp. 274{286.

[Knu95b] L.R. Knudsen, \Truncated and Higher Or-
der Di�erentials," Fast Software Encryp-

tion, 2nd International Workshop Pro-

ceedings, Springer-Verlag, 1995, pp. 196{
211.

[Knu95c] L.R. Knudsen, \New Potentially `Weak'
Keys for DES and LOKI," Advances in

Cryptology | EUROCRYPT '94 Proceed-

ings, Springer-Verlag, 1995, pp. 419{424.

[KSW96] J. Kelsey, B. Schneier, and D. Wagner,
\Key-Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES,"
Advances in Cryptology | CRYPTO '96

Proceedings, Springer-Verlag, 1996, pp.
237{251.

[KSW97] J. Kelsey, B. Schneier, and D. Wagner,
\Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES,
RC2, and TEA," Information and Com-

munications Security, First International

Conference Proceedings, Springer-Verlag,
1997, pp. 203{207.

[Mas94] J.L. Massey, \SAFER K-64: A Byte-
Oriented Block-Ciphering Algorithm,"
Fast Software Encryption, Cambridge Se-

curity Workshop Proceedings, Springer-
Verlag, 1994, pp. 1{17.

[Mat94] M. Matsui, \Linear Cryptanalysis Method
for DES Cipher," Advances in Cryptol-

ogy | EUROCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 386{397.

[MKK98] J. Massey, G. Khachatrian, and M. Kure-
gian, \Nomination of SAFER+ as Candi-
date Algorithm for the Advanced Encryp-
tion Standard (AES)," NIST AES Pro-
posal, 1998.

[NBS77] National Bureau of Standards, NBS FIPS
PUB 46, \Data Encryption Standard,"
National Bureau of Standards, U.S. De-
partment of Commerce, Jan 1977.

[NTT98] Nippon Telephone and Telegraph, \Speci-
�cation of E2 | a 128-bit Block Cipher,"
NIST AES Proposal, Jun 98.

[SKW+98] B. Schneier, J. Kelsey, D. Whiting,
D. Wagner, C. Hall, and N. Ferguson,
\Two�sh: A 128-Bit Block Cipher," NIST
AES Proposal, Jun 98.

[Wag95] D. Wagner, \Cryptanalysis of S-1,"
sci.crypt Usenet posting, 27 Aug 1995.

[WH87] R. Winternitz and M. Hellman, \Chosen-
key Attacks on a Block Cipher," Cryptolo-
gia, v. 11, n. 1, Jan 1987, pp. 16{20.

A Additional Properties of the
SAFER+ Key Schedule

A.1 Round Subkeys and \Slide" At-

tacks

In some ciphers, it is possible for a sequence of sub-
keys to repeat somewhere during the cipher. For
example, we might get the same subkeys reused ev-
ery two rounds throughout a cipher. This allows
an attack in which we choose plaintexts to get a
pair such that text X1 is the result of the �rst two
rounds of the encryption of text X0. If this is the
case, then Y1 = E(X1) is the result of two more
rounds of encryption than Y0 = E(Y0). This allows
a straightforward attack to recover the �rst and last
two rounds' subkeys. We call this the \slide" attack
[Wag95, BW99].

In SAFER+, the subkey biases appear to pre-
vent this from happening. There is no apparent way
to get the subkeys to repeat, either for a single key,
or in a Biham-style related-key attack [Bih94].

A.2 DES Type Weak and Semi-

Weak Keys, Equivalent Keys,

and Symmetry Properties

In DES, there exist a few keys that are self-inverse;
encrypting any text twice under such a weak key
gives back the original input text. We are unable to
prove their nonexistence, but there are strong intu-
itive reasons to believe that there are no such weak
keys for SAFER+.

12

The reason is that the encryption and decryp-
tion processes, though quite similar, are not iden-
tical. That means that even getting the same sub-
keys forwards as backwards will not lead to a self-
inverse key. The transition matrix which describes
the mixing layer is very di�erent from its inverse;
there is no way to change the key bytes used in a
way that consistently undoes the e�ect of this tran-
sition matrix. Thus, if there are self-inverse keys,
they can't be constructed simply by choosing keys
to make round 0 the inverse of round 15, round 1 the
inverse of round 14, etc. We would �nd it extremely
surprising if there were weak or semi-weak key pairs
in SAFER+.

In DES [NBS77], there are also semi-weak key
pairs; these are key pairs such that encryption un-
der one of the keys in the pair can be decrypted by
encryption under the other key in the pair. For the
reasons given above, we do not believe SAFER+ has
any semi-weak key pairs.

DES also has quasi-weak keys; pairs of keys for
which many more plaintexts than would otherwise
be expected have identical ciphertexts for both keys.
In some sense, a pair of quasi-weak keys represents
a selection of two \nearby" permutations. We have
not found any pairs of quasi-weak keys for SAFER+,
but do not have a strong reason to doubt that they
could exist. However, there does not appear to
be any opportunity to construct quasi-weak keys
in SAFER+ as they are constructed in [Knu95c],
as any change to the key in SAFER+ causes some
nonzero di�erence to result every time a changed
part of the key is used.

In some ciphers, there are equivalent keys: pairs
of keys that result in an identical encryption. For
example, LOKI-89 [BPS90] is known to have classes
of equivalent keys [Knu93]. We were unable to �nd
any way to construct equivalent keys for SAFER+.
In fact, it looks very di�cult to do this for SAFER+.
Any change in the key always gets used in many suc-
cessive rounds, making it quite challenging to �nd a
pair of keys whose changes will cancel one another
out for more than one or two rounds. We would be
very surprised to �nd equivalent keys in SAFER+.

A.3 Key-Dependent S-boxes and

Characteristics

SAFER+ is typically described as a cipher with �xed
S-boxes and key material combined in before and af-
ter the S-boxes. However, it is possible to describe
SAFER+ in an alternative way, with sixteen di�er-
ent key-dependent S-boxes each round. In this case,
key material is combined in directly only during the
output transformation.

A key-dependent S-box can be generated by
choosing two key bytes, k0; k1, and a �xed S-box,
exp[] or log[]. We then de�ne s(x; k0; k1) = k0 +
exp[k1�x]. The reason for considering these as key-
dependent S-boxes is that there may be properties of
the combined S-box that aren't present in the �xed
exp[] or log[] S-boxes. As yet, we have no analysis
based on this observation. We would be unsurprised
to see some choices of k0; k1 for which the result-
ing S-box would be unusually weak with respect to
di�erential [BS93], linear [Mat94], generalized lin-
ear [HKM95], or partitioning [HM97] attacks. Since
a given succession of three key bytes generally de-
�nes about sixteen di�erent key-dependent S-boxes,
though, we would be very surprised to see keys that
gave very bad linear, di�erential, or other proper-
ties throughout the whole cipher, due to the way
the mixing layer spreads di�erential or linear char-
acteristics out quickly. However, we might see some
keys that gave us unusually bad linear, di�erential,
or other properties through a small number of con-
secutive rounds of the cipher.

Another possible concern would be if there were
some quadruple of extended key bytes possible,
(w; x; y; z), such that one of the byte permutations
de�ned by w; x was identical to one formed by y; z in
the same positions. If this happened, then by swap-
ping y; z for w; x, we would get no e�ect in some
rounds in our new proposed key schedule. (Assum-
ing the quadruple worked only for one of the byte
permutation de�nitions, either the one starting with
an XOR or the one starting with an addition, and
considering SAFER+/256-SK, the change have no
e�ect in four of the �rst eight rounds of the cipher, at
the cost of a radical change in the last eight rounds.)
This doesn't appear to pose a practical threat to the
cipher.

13

